Latent heat (also known as latent energy or heat of transformation) is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process—usually a first-order phase transition, like melting or condensation.
Latent heat can be understood as hidden energy which is supplied or extracted to Phase transition of a substance without changing its temperature or pressure. This includes the latent heat of fusion (solid to liquid), the latent heat of vaporization (liquid to gas) and the latent heat of sublimation (solid to gas).
The term was introduced around 1762 by Scottish chemist Joseph Black. Black used the term in the context of calorimetry where a heat transfer caused a volume change in a body while its temperature was constant.
In contrast to latent heat, sensible heat is energy transferred as heat, with a resultant temperature change in a body.
Both sensible and latent heats are observed in many processes of transfer of energy in nature. Latent heat is associated with the change of phase of atmospheric or ocean water, vaporization, condensation, freezing or melting, whereas sensible heat is energy transferred that is evident in change of the temperature of the atmosphere or ocean, or ice, without those phase changes, though it is associated with changes of pressure and volume.
The original usage of the term, as introduced by Black, was applied to systems that were intentionally held at constant temperature. Such usage referred to latent heat of expansion and several other related latent heats. These latent heats are defined independently of the conceptual framework of thermodynamics.Bryan, G.H. (1907). Thermodynamics. An Introductory Treatise dealing mainly with First Principles and their Direct Applications, B.G. Tuebner, Leipzig, pages 9, 20–22.
When a body is heated at constant temperature by thermal radiation in a microwave field for example, it may expand by an amount described by its latent heat with respect to volume or latent heat of expansion, or increase its pressure by an amount described by its latent heat with respect to pressure.Maxwell, J.C. (1872). Theory of Heat, third edition, Longmans, Green, and Co., London, page 73.
Latent heat is energy released or absorbed by a body or a thermodynamic system during a constant-temperature process. Two common forms of latent heat are latent heat of fusion (melting) and latent heat of vaporization (boiling). These names describe the direction of energy flow when changing from one phase to the next: from solid to liquid, and liquid to gas.
In both cases the change is endothermic, meaning that the system absorbs energy. For example, when water evaporates, an input of energy is required for the water molecules to overcome the forces of attraction between them and make the transition from water to vapor.
If the vapor then condenses to a liquid on a surface, then the vapor's latent energy absorbed during evaporation is released as the liquid's sensible heat onto the surface.
The large value of the enthalpy of condensation of water vapor is the reason that steam is a far more effective heating medium than boiling water, and is more hazardous.
It was known that when the air temperature rises above freezing—air then becoming the obvious heat source—snow melts very slowly and the temperature of the melted snow is close to its freezing point. In 1757, Black started to investigate if heat, therefore, was required for the melting of a solid, independent of any rise in temperature. As far Black knew, the general view at that time was that melting was inevitably accompanied by a small increase in temperature, and that no additional heat was needed beyond what this increase in temperature would require in itself. Soon, however, Black was able to show that much more heat was required during melting than could be explained by the increase in temperature alone. He was also able to show that heat is released by a liquid during its freezing; again, much more than could be explained by the decrease of its temperature alone.
Black would compare the change in temperature of two identical quantities of water, heated by identical means, one of which was, say, melted from ice, whereas the other was heated from merely cold liquid state. By comparing the resulting temperatures, he could conclude that, for instance, the temperature of the sample melted from ice was 140 °F lower than the other sample, thus melting the ice absorbed 140 "degrees of heat" that could not be measured by the thermometer, yet needed to be supplied, thus it was "latent" (hidden). Black also deduced that as much latent heat as was supplied into boiling the distillate (thus giving the quantity of fuel needed) also had to be absorbed to condense it again (thus giving the cooling water required).
Black next showed that a water temperature of 176 °F was needed to melt an equal mass of ice until it was all 32 °F. So now 176 – 32 = 144 “degrees of heat” seemed to be needed to melt the ice. The modern value for the heat of fusion of ice would be 143 “degrees of heat” on the same scale (79.5 “degrees of heat Celsius”).
Finally, Black increased the temperature of a mass of water, then vaporized an equal mass of water by even heating. He showed that 830 “degrees of heat” was needed for the vaporization; again based on the time required. The modern value for the heat of vaporization of water would be 967 “degrees of heat” on the same scale.
From this definition, the latent heat for a given mass of a substance is calculated by
Ethanol | 108 | −114 | 855 | 78.3 | 351.45 | |
Ammonia | 332.17 | −77.74 | 1369 | −33.34 | 239.81 | |
Carbon dioxide | 184 | −78 | 574 | −78.46 | 194.69 | 570 |
Helium | 21 | −268.93 | 4.22 | |||
Hydrogen(2) | 58 | −259 | 455 | −253 | 20.15 | |
Lead | 23.0 | 327.5 | 871 | 1750 | 2023.15 | |
Methane | 59 | −182.6 | 511 | −161.6 | 111.55 | |
Nitrogen | 25.7 | −210 | 200 | −196 | 77.15 | |
Oxygen | 13.9 | −219 | 213 | −183 | 90.15 | |
Refrigerant R134a | −101 | 215.9 | −26.6 | 246.55 | ||
Refrigerant R152a | −116 | 326.5 | −25 | 248.15 | ||
Silicon | 1790 | 1414 | 12800 | 3265 | 3538.15 | |
Toluene | 72.1 | −93 | 351 | 110.6 | 383.75 | |
Turpentine | 293 | 154 | 427.15 | |||
Formic Acid | 275.46 | 8.35 | 1010 | 100.75 | 373.9 | 1300 |
Water | 334 | 0 | 2264.705 | 100 | 373.15 | 2840 |
where the temperature is taken to be the numerical value in °C.
For sublimation and deposition from and into ice, the specific latent heat is almost constant in the temperature range from −40 °C to 0 °C and can be approximated by the following empirical quadratic function:
|
|